
Data Quality technical documentation

Abstract
Case study aims to build a POC that will show usage of one of the most popular packages Soda
SQL for ensuring high data quality in a wide range of storages.

Problem definition
A lot of companies from a wide range of industries who collect data in databases, cloud
storages, data warehouses face data quality problems. Process of profiling data on its
flow is very challenging, since there are no tools that will meet all business requirements
simultaneously. Implemented case study shows how open source tools and libraries
could be used to build data quality analysis for ETL jobs. First of all, such solutions
should be flexible in choosing data storages that should be profiled and have a
comprehensive set of metrics to apply on top of data. Additionally, profiling after data
transformations and aggregations will allow us to track metrics during data flow and
reduce the time for researching broken values. Soda SQL - ideal solution for addressing
mentioned use cases. It utilizes user-defined input to prepare SQL queries that run tests
on dataset in a data source to find invalid, missing, or unexpected data. When tests fail,
they surface the data that you defined as “bad” in the tests. Armed with this information,
data engineering team can diagnose where the “bad” data entered your data pipeline
and take steps to prioritize and resolve issues.
For more information how Soda SQL works please refer to the official description:
https://docs.soda.io/soda-sql/concepts.html
Soda SQL supports a wide range of storages including PostgreSQL, Snowflake,
Amazon Redshift, GCP Big Query, MySQL, even Apache Spark dataframes and much
more where you can scan your data.

Soda SQL description

How Soda SQL works
After installing Soda SQL, you have to run the soda create warehouse_type command
to set up data warehouse and env_vars YAML files, add login credentials to the
env_vars YAML, then run soda analyze command. As a result, YAML files in the

https://docs.soda.io/soda-sql/concepts.html


/tables directory will be created that map to datasets in the data storage. After
everything is done you are ready to scan.

The following image illustrates what Soda SQL does when scan is initiated from CLI.

Soda check could be easily integrated into orchestrated tools like Airflow, Dagster, or dbt
Core™, to automate and schedule search for “bad” data using Python code. This is a more
flexible way than running commands from CLI because it allows us to have more control
over test results.
For example, Airflow provides PythonOperator and BashOperator for running Soda SQL
logic.

Example of a python function with Soda SQL logic is shown below.



Tests definition
A test is a check that Soda SQL performs when it scans a dataset in a data source.
Technically, it is a Python expression that checks metrics to see if they match the
parameters defined for a measurement. A single Soda SQL scan runs against a single
dataset in the data source, but each scan can run multiple tests against multiple
columns.

Soda tests are defined in a scan YAML file which is associated with a specific dataset in
the data source. Writing tests is possible using a built-in set of metrics that Soda SQL
applies to an entire dataset, built-in column metrics that Soda SQL applies to individual
columns or using custom metrics (also known as SQL metrics) that apply to an entire
dataset or to individual columns.

Regardless of where it applies, each test is generally comprised of three parts:

● metric - property of the data in your data source
● comparison operator
● value

However, sometimes tests can have a fourth element to check whether data is valid.
Validness is defined by column configuration key and expected format.

For example, the user defined the valid_format as date_eu or dd/mm/yyyy format. The
metric invalid_percentage refers to the valid_format configuration key to determine if the
data in the column is valid.

Full-structured YAML file with examples of usage of all mentioned features is shown
below.

https://docs.soda.io/soda/glossary.html#dataset
https://docs.soda.io/soda/glossary.html#data%20source
https://docs.soda.io/soda-sql/scan-yaml.html
https://docs.soda.io/soda-sql/sql_metrics.html#dataset-metrics
https://docs.soda.io/soda-sql/sql_metrics.html#column-metrics


For more information about possible metrics please refer to the official page
https://docs.soda.io/soda-sql/examples-by-metric.html

Case Study implementation

Architecture
Below architecture shows how Soda SQL could be integrated into data pipelines that include a
bunch of transformations and aggregations using Apache Spark and saving data into one of the
popular DW Redshift with further representation test results using ELK stack and lineage of data
flow using Apache Atlas.

https://docs.soda.io/soda-sql/examples-by-metric.html


Soda SQL scans can be applied anywhere in the ETL pipeline for measuring data quality and
reducing time for analyzing places where data was broken.

Test results representation
Collecting and representing test results is crucial for understanding scanned data, checking
scan results and tracking possible problems over the time. One of the systems that could help to
address mentioned problems is Elasticsearch for storing data and Kibana for graphical
representation.
On the screenshot below is shown how test results look in table representation.



Every row contains information about column name, execution date of specific DagRun
and test result. This information allows track tests over the time and build dashboards.

Data Lineage
Data lineage uncovers the life cycle of data - it aims to show the complete data flow,
from start to finish. Data lineage is the process of understanding, recording, and
visualizing data as it flows from data sources to consumption. This includes all
transformations the data underwent along the way, how the data was transformed, what
changed, and why. Visualization of the data flow will make the process transparent and
more understandable.
Screenshot below shows how data lineage looks like for an implemented case study.



Graph shows where data is stored, what kind of transformations are applied, where
results are saved.


